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1- Introduction

We work with distribution functions (d.f.) F which satisfy F(O-)=O and F(x) < 1

for every x a R. We use * to denote the usual convolution product. i.e. the

convolu,•on powers of F are given as F*2(x) . F(x-y)dF(y), Fý=Fmn-I*F,
n0n

n=1.2,... and = 60 the d.f. of the unit mass at zero. Throughout the

paper, the tailfunction of a given d.f. G will be denoted as C. i.e. F = 1-F,

F%1- etc....

We now define the class 9 of subexponential distributions.

Definition 1,1

A d.f. F is called subexponential (F a 9) iff

_VM
(1.1) lim F(x) = M for some integer a 1 2.

SF(X)

It is well known that If (1.1) holes, it holds for all integers m Ž 2 (see [2]).

The class V was introduced independently by Chiskyakov [2] and Chover et al.

[3]. Both authors used this type of d.f. to model the lifetime distribution in

a subcritical branching process in order to determine the asymptotic behaviour

of the mean population size [2] [4].

Chover et al. [3] also introduced the class SD of densities corresponding to the

d.f. in definition 1.1

Definition 1.2.

A probability density f > 0 is subexponentlal (f e SD)

(1.2) (i) lieo fixi) 1I for every :y R
X-M 2(x)

(1.3) (it) It- f)x2 W

x
Here x denotes density convolution. i.e. f x g = J0of(x-y)g(y)dy and should not

be confused with W.

It is clear by de l'Hopitals' theorem that if a d.f. F I•s a density f e SD.
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also F a• •.

Ever since they were originated, tha classes V and SD have been atudied

extensively by a numer of authors, such as Teugels [2], Pitman [17]. Lmbrechts

and Goldie [8], [9]. Cline [6]. Omey and Willekens [14] [15]. Since

subexponentlal d.f. characterize a certain tail behaviour of compound

distributions. applications of the previously defined classes may be fo'-nd in

various domains of stochastic processes, see e.g. [10] [12], [24] and references

therein.

Because of the convolution power in definition 1.1 it is often very hard to

check if a given d.f. satisfies (1.1). Sufficient conditions for membership of

V only In terms of the tail of F are known [6] [11], but require an analytical

expression for F. If a d.f. is only known through a finite number of

observations, it is Impossible with the present theory to decide whether this

d.f. Is subexponential or not. Such situations frequently arise in some applied

stochastic models such as queuing and risk theory, see [13].

In this paper, we are concerned with developing a statistical approach to

subexponentiallty, in the sense that we want to define a statistic, based on a

given sample X1,X 2 ..... n. which gives us valuable information to decid( whether

the underlying d.f. is subexponential or not.

In the next section, we introduce a statistic which reflects the oubexponential

property of its correspending distribution. In section 3 we prove that the

statistic is strongly consistent while section 4 is devoted to the asymptotic

normality. Finally section 5 contains some commnts and corcluding remarks.
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2. Definition of the statistic

Let X1 ,X2 .... Xn be a sequence of independent identically distributed (i.i.d.)

random variables with d.f. F. and denote by XI:n K ... K Xn:i the order

statistics of the sample. The following statistic is the sample version of

(1.1) and seems a plausible choice to describe subexponentiality:

Fn (x)
Hn(X :fA n(x)"nn

F(X) n A
Here Fn denotes the empirical d.f. based on X ... OXn and An(x) = (w: 31:

1 K i I n: Xi(W) > x).

Notice that the indicator function IA is necessary to make sure that Hn (x) is
n

well defined.

Since Hn (x) is a ratio of V-statistics (see (20]), and IAn(X) -4 1 almost surely

(a.s.) for fixed x. we get that

F'(x)
lie H (x) =- a.s. for fixed x.
n-00 F(x)

In order that H%(x) can give a meaningful description of the subexponential

behaviour of F. we have to let x -em. which gives

lim lim Hn(x) = 2 iff F a $.

This relation shows that H contains Inforsmtion about 5P. but. is in a senseU

useless because of the t.wo limits. One way to solve this problem is to
substitute for x a deterministic sequence (xn)n and letting n -o a. In this case

however, the remaining statistic depeus on a parameter which has to be chosen

artificially and it turns out that this parameter rather heavily depends on the

d.f. F, which is generally unknown (see [24]).

We therefore propose to replace the detarministic sequence by a random sequence

by takinM for each n one of the observations, which tlmost surely tends to

infinity as n -,.
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If we choose for each n the intermediate order statistic Xn-k:n with kI "
bt

butkn-*0.then H(Xk n reduces to

.(Xn-k,,:n) " .1.-1 - .I(Xt+X I +'''+ X ' X-k :a)
nt ken c' 1 2 n

where I denotes the summation over all m-tuples (i, .--$) consisting of m

elements of (i,... ,n).

We now slightly modify H n(Xnk .n) by removing the sun over all m-tuples which

at least contain two equal integers. This will not affect the asymptotic

behaviour because their contribution to the whole sum is of a sumller mngWitude

than the sum of the rmaining terms. Finally changing the norimlizing constant

a little, we end up with the statistic we will discuss in the next sections:

(2.1) U (X ) :, n--I I- I(X1  + X ... + > X~ n
. -kn: nl W-n . c I(i I Ii* "' i n-kn:n"

n n(a)c 1 2 a n

Here I stands for the sum over all combinations of m distinct elements out of
c

(l,.... .n).

knClearly for each fixed x. •--Un(X) is a U-statistic and it seems irresistable to

use the well known asymptotic theory !or U-statistics (20] "n order to determine

the behaviour of Un(Xnk .).

However the presence of (X-kn:n ) makes the kernel stochastic and n-dnpendent.

so that Un(Xn-kn:n) is in fact a U-statistic with an estimated parameter, see

(16]. [18]. Asymptotic normality of such statistics ws studied among others by

hmadles [18]. His mthod howevr is only valid when the estimted paiameter Is

constant, while in our ease Xn-k :n is (under the appropriate conditionc) a

consistent estimtor for xn. where x. is the intermediate population quantile.

knk
given by the equation F() . And since -0' x

In the nert soctions we adapt and modify Rbndles method to make it work in our

case. The basic tool in establishing this is an a.s. Bhhadui representation for
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Xn-k :n" This is provided by Watts (23]:

let F be a d.f. such that on an interval (c,4). c > 0, F'(x) = f(x) and f'(x)

exist with f(x) > 0, and suppose that there is a constant X and a function V

with V(x) a 0(x) (x-m) such that

(2.2) F7  ) <x N and F(x)If 'fx + y)I (I

V(x)(x) f 2 (x)

for large x. where y = o(V(x)) (x -. a). Define

L(xy) :- sup(f(z) I Iz-xI K y} and N(xy) := inf(f(z)l Iz-xl ý yl

and assume whenever y =o(V(x))

(2.3) Vx~9.- and - Mxy) remain bounded as x -".

Then, under (2.2) and (2.3). for any sequence k with . n-* 0 and n
n n log3

(2.4) X - x + nn(x)n-kc: n n nf~
k n_ k

where F(x) n n ad

(2.5) Rn = O((kn log 3n)I/4 /nf(xn)) as n -. with probability one.

Before we proceed investigating the propertios of Un(Xn-k :n). we first show
n

that the conditions (2.2) and (2.3) are satisfied for a large subclass of

subexponential distributions. Also notice that every d.f. F in VD is close to a

subexponential d.f. C (in the sense that F(x) G(--) (x-. a)) with G infinitely

many times differentiable [19]. so that it is no loss of generality to assume

that the derivatives of F exist.

We need the following class of functions which generalizes properly the cl-Iss of

slowly varying functions (sm [1]): L a OSV iff there exist absolute constants

0 < c ý C < a such that for every t 2 1.

lim L(xt) L(x)
0(<c • i n ~x ;ll sup L~x ,c (...
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Let F a V and L OS such that

X

Assume that

MItosu L(x x IIf a 0

ly)

(it) L is bounded away from 0 and ita sup txL'(x)l < * if a = 0.
x-00

Then (2.2) and (2.3) are satisfied.

Sinme :. LLe UXlXy +n[ AL~ L(x)) ~lXJ i
a - 'Y y.

(2.7) F(x)

= x- L(x) If a=O

it is clear that the first property in (2.2) is satisfied.

First consider a > 0: with the expression for Va in (2.7), it is easy to see

that F(x + o(V(x))) , i(x) (x-w) and then (2.3) follows immediately from the

regular variation of V and (2.7).

To show the second part of (2.2). it is sufficient to prove that T is

bounded, which is satisfied by (i).
X

If amO. V0 (X) = 0rx w (x) since L is bounded away from zero.

The saome reasoning as for the case a > 0 coqlotes the proof. 0

1. Clearly the repreeentation in (2.6) contains all itqrtant archetypes of

subexpineutial d.f. Hwmever, since L is bounded from below if a a 0. it always

implies that

(2.8) i(x) - o(x"*) (x4s)

for sme a > 0. such that (2.6) does not cover d.f. with slowly varying tails.

This is not surprising as such distributions goverally violate the first
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condition in (2.2). see e.g. [7].

2. Clearly (2.3) implies that F(x + o(V(x))) - O(F(x)) (x-m). whereas the

representation in (2.6) gives that

(2.9) F(x + o(V(x))) ~ Fi(x) (x-0).

This zomewhat stronger condition will be used in section 3.

3. Strong conuistencv of U, (X _ :n)

Therm 3.1 Let X1 .X2 ..... Xn be a sequence of i.i.d. random variables with

d.f. V and let F' a f a SD. Suppose that (2.2). (2.3). (2.8) and (2.9) are

satisfied.

If (k)n is a regularly varying sequence such thnt 0-- 0 and Itn/log3n -... then

UIn(X-k :n) a as..
n

Prof. From the a.s. Bahadur representation in (2.4) and the law of iterated

logarithm for triangular arrays [5]. we easily obtain that

xk: x + T +Rn :- h(n)
nXn-kv& :oo knnf n n

where Tn 0" n (n0) .
I nf(x~)

and Rn is a in (2.5).

It is therefore sufficient to show that

U(h(n)) -. a.. asu-.

k k
Let n U (x) denote the projection ot the U-statistic n-n U(x) on the basic

observations ([20, p. 187]). then one emaly calculates with the method of [20.

p. 182] that for every n k a.
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M2 m1 2
(3.1) ý ) E(U n (X) - U n(x) (()) +((x -Fx)

- 0(F (?-ix-y))2dF(y)

o(F(x)) (x -. -).

The last step follows from the fact that f a SD and [14. lesm 3.1.1]. From the

first condition in (2.2). we have for n sufficiently large that

______ N.V(X.)

Furtherore., (2.8) implies thaixt % K (i -•/a). such that

T 0[ log 1/&og n1,/kc) 11/21
ll Ip3n "n ((n n

Since k/log n -,. we have that Tn o(V(x)) (n - and since R = o(T n

(n -* a). we obtain that

(3.2) h~n) - xn + o(V(xn)) (rn -. s).

Together with (3.1) and (2.9). this implies that

E{Un(h(n))) - U n(h(n))) 2 = F h2 n o01"] (n -.m)

n

and since log"n = o(kn) (n .m), it follows from Chebychev's inequality and the

Borel-Cantelli lomnm that

(3.3) U n(h(n)) - U n(h(n)) -. 0 a.a. (n -. ").

From (3.2) and (2.9) we have that F M(h(n)) ~ mF(xn) (n-w) such that with (3.3).

the proof is finished if we can show that

(3.4) Un(h(n)• n F ('h(n) 0 a. a.. (n-0).

Now

(3.5) -iU (x) 2- F (x•-XI) -(m-') ?"(x)

so that



~ ~n -.-Wm ))2
E(Un(h(n)) - F (h(n)))

n
2N

To-- (JO (F'(h(n) y))2dF(y) ( (2h(n))) )

0n
(3.6) -nos2

3)- F(h(n)) (ri-)

n

-F~ 2 (n--n).
n

As in (3.1). (3.6) follows from the fact that f e SD and [14. lemms 3.1.1).

Tukinig a > I arbitrary, and putting n. (a= ]. e=1.2..... it follows from (3.6)

and the Borel-Cantelli leam that (3.4) holds if the limit is taken over the

subsequence ( Ou)e. Our aim however is to let a -+ I and to prove convergence

over the whole sequence.

Take n > 0 arbitrary and let e = e(a,n) be such that (a J n ( 1+a]. Without

loss of generality we may assume that the sequence (h(n))n is monotone non

decreasing. such that

(3.7) 1la(f) KU (h(n)) - F- (h(n)) I2, (e)

with

'2'°(t) I (- i{F (h((a']) - X1) --"'(h((ae+l))

and

I, ) 1 1  ( 1 0) - X,) - f'(h[a"1)))"
niI

Now

nI 2'°(e) I n t• (F '-(h([u] X XI) - F'•O(h([fa ))
m - F

+ - F (h([oe)) - ih(hl (h(]))).

mn

Clearly the first term in the right hand side tends a.s. to zero as e

Since f a SD. the second term Is asymptotically equal to

m2o e - +1 2 -1-I n kaem2 fgJ

- (Flhl[°)) -(h([om2()) ~m - k ae+l a k e ) Wn * e"
nl (a I (a) n [a]

Since (kn ) is a regularly varying sequence, we then have that

nnm
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lim lim 1 2 ,a()) . 0.
a-41 *-.W

The same treatment for I la(8) and (3.7) imply (.,..4). This completes the

proof. 0

4. Asvmttotic ngrmality of Un(Xn-k :n).
n

For proving asymptotic normality, we use the following smoothness condition

which is somewhat stronger than f a SD:

(4.-I) lim (fx2 (x))' -- :2.
Sf'(x)

Clearly from de 1'Hopital's theorem, (4.i) implies £ e SD.

Theorem 4.1.

Let X1 ,X2 .--.. Xn be a sequence of i.i.d. random variables with d.f. F and let

F' = f. Suppose that (2.2), (2.3) and (i.1) are satisfied. If (k )n is a

nn3
sequence such that - -n 0 and kn /log n nand if F(xn k nn, then

F•'m(xn) d2Sn-k :n N

n [(xn

Proof

For the proof of the theorem we follow Randles [18] and we split up

-n Un(Xn-k :n) - ?(x Al(m,n) + A2(m,n) where

n
k

(4.2) Al(m.n) = n U(xn) - F (xn) + F (Xn-k :n) - "M(x)
n

and
k k

(4.3) A2 (m,n) = - n *MCn)
n Un(Xn-k :n Fn(X-k :n) -Un(Xn) F (n n

Each of the terms Al(m,n) and A2(m,n) -.,Ill be considered in a separate lemma,

and the proof of theorem 4.1 follows immediately from a combination of both.
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Under the conditions of theorer 4.1,

d 2
-A1 (m,n) -* N (0.46

n

Using a two term Tkvlor expansion, we can write
(4.4) F""(X•_k -)"'€-X()(n :_.n) f'x€) +1 2 •m) ()

n-l% n) '(xn - (n-i% n nn 2'(Xnkl% :jxn) (f (n

where len() - •n • IXfk :n(w) - xnI. The Bahadur representation in (2.4)
n

implies that

nf(x)
(4.5) n k Xn O(l)10Cxnk .n -:n n oPt

n

such that =x 0( n (n"l)

Cleariy by (2.2). n o(V(x (n

rnf(x) n n(~) n i)

Furthermore. from (4.1) and [14. lemv 3.1.3]. we have that

Il. (f1. Ix)
x-" f'(x) -"÷I

Using this. we can write

(4.6) 4(_k - X )2(f)")(. =f'(x +(• n )) 0 ( n)

With U defined a. in (3.5). we have from (3.1) that

- 1/2
(4.7 F(x)) (n0

(4.7) U(xU) -Vnx) + Op( k n

I Combination of (4.4) - (4.7). (3.5) arid (2.4) implies that
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n

(4.)- - (x ))

n n

fm(xn) 0 ) L n 1/4
+ •%(l) + 0(1 (0 )

f(x 0pnf(xn F(x + 1(xn) /2)
+ 2ai0) ( k n

Since

Var{ -ll(xi-Xi) + I(Xi > xI)

""odF(y) +3 (x)n (?"(xn) + _(xn))
-Fl(xn) (1+3)

4-k
n (n-s).

nn

and since all remainder terms in (4.8) tend to zero. It Is easy to see by the

central limit theorem for tra-igular armys [5] that the desired limit law for

Al(mn) holds. This completes the proof. 0

Le-.a4.

Under the conditions of theorem 4.1.
P

(4.9) A2( A(m.n) -. 0.

n

Denote
S2'...' XIMq) :=I(xI I +x +,....+ x >

and put
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Qn(s) :

n_ 1(h(X .... x + n - h(xi x .... x :x;)}"
D.j~ ci~ n nf (xnY)s 1l 2' 1 in

n

In this notation. (4.9) is equivalent to showing that

nf(x -)

nn
n

By (4.5). it is therefore enough to prove that for some bounded interval C.

(4.10) F(sup Qn(s) > a) -* 0 (n-* ).
saC

for every a > 0.

The way to show (4.10) follows more or less the same lines as the proof of [21.

Theorem 3.1].

We first investigate the differences of the kernel h! for 0 • s < t,

vVic
(4-11) Ejh(X X .Xi;x + n t) - h(X .X .... X ;Xn + nf(x s)

nl XI n F.m n • n

•E{I(x + n X +...+Xi n + nfXn )+ (x + nf(- • )
n nfx I nn 1 m n nn

_ _ n t nn

-F"(xn + nfV-n) s).} = 2 V f(x + -nx u) du
n fxn nf(x n) n nf(xn

2m c1 n-- (t-s)

where c 1 > 0 is some absolute constant.

For 6 > 0 and integer r to be specified later. define

*n0r(S):=-.n 1 {h(x ,1x2 .... x, x+ Vi s)
Qn,r~s Z-M i1  i2 '. ' 1 ln flf(x n

n

h(x .x :xn + n r-6)).
1 ...2" m n "

Then

(4.12) Qn(s) = %nrCS) + Qno(r6).
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First consider Qn.o(r8). Then

.or)-.-"'r') -hX ....+ )i .

..... T;x÷ - r6) - h(X.... ;x).

Constder all term with f 9 m equal component*, then by the boundedness of h and

(4.11). the contribution of these terms will be miler than

c (nl)2ln r .c2r (n-P.).

n

If f = 0. obviously the expectation of the product is zero. so we wy write

EL•.o (r6) c 3  r

n

Implying that

p
(4.13) Qn.o(r 6 ) - 0 as n-o.

We now treat Qn.r(,).

Denote

Hrn(Xi ..... Xi) (xn + ny.-.n r6 X X+. '"+X X nfX)(r+l)6)

n a

+ F'(x, + 'An r(+1)6) F F"Is Yk nf•)
nF (x+.-(r15(xn + nf(%xn) 5 '

then by (4.11).
(4.14) sup I2~() ••• • Hrni Xe

r6Ks<(r+1)618,r (n gcT (XI ..... Xi)

n

•D + 2c 1  8

where

SDn • n.T (Hr(X..XI*) -.n(X ..... Xi

In the sam ay as for %.o(r6). one am show that ED n o that D n 0.

Now let C be any bounded set in R and let e be arbitrary.
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Coose 6 = e/Smc1 . then C C U Cr6, (r+1)6) with K a finite set of integers.
rex

By (4.12).

sup Qnts) K sup ( sup ((r) r(s) + %.o(r6))
SEC reX r8ý9<(r+l

such that

P(sup Qn(s) > e-) (#(K)){P( sup -r(s)I > e./2) + P((,o(r6) > &/2)1.
sac r6ýs((r+l)6 r.

Then by (4.13) and (4.14),

P
sup %(s) -+ 0.
saC

proving the Im. El

5. Some comments and concludinr remarks.

1. Writing the statement in theorem 4.1 in the following way
k d

n kn U -X (x). , 2)
n n n-k :n) - ?'(•n • M (0.4.

nn
n

kn

shows that nn U(Xn-k :n) is a consistent and asymptotically norml estimtor
n

for the behaviour o, the tail of the rn-th convolution power of F.

2. It would be highly interesting for practical purposes to know when the ratio

in theorem 4.1 can be replaced by its limit m. To establish this, we

F(x )

need Information on the difference

(5.1) ?`(x) - ,F(x ).

A second order theory for subexponential d.f., providing the asymptotic

behaviour of (5.1), has been established by Oney and *illekens [14].[15]. Using

the results in [14]. we know that for a large subclass of V. the difference in

(6.1) behaves as 2p(:)f(x n) (n-m). where p -*'oxdF(x). We then have the

following
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orol l£.

Suppose that the conditions of theorem 4.1 are satisfied and that

It -F x- 2x)I A<.
X-M f(x)

If kn is such that nf(xn) a o(Nic) (n.-). then

vC( (Xn-k :1n) - ) " N (01o. 2).
n

The condition on kn in corollary 5.1 involves the density f and shows that kn

must not grow too fast as n-m.

In the siecial situation that F has a regularly varying tail. we have form [14].

Let X,.X2 .... Xn be a sequence of i.i.d. random variables with d.f. F such that

ois regularly varying with index -a. Suppose that (2.2) and (2.3) are

satisfied.

If k is a sequence such that kn = o(n or + 1) and log 3n = o(kn) (--w), then

- d
(5.2) Vý(U(Xn( k :n)_ - 4 N (0.4.2)

n
Clearly, if kn = O(Iqpn) for some P > 3. (5.2) holds uniformly over the class

of d.f. with regularly varying tails which satisfy (2.2) and (2.3).

3. It is well known that the class $4 can be embedded in the family (9(v). v 2 0),

where d.f. F in V(7) satisfy

lit (x2() = 2f (--) <-

F(x)
with f the Laplace transform of F.

A similar result as in theorem 4.1 can be established for the classes V(7).

7 > 0. but in this case the asymptotic variance will depend on F.
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